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ABSTRACT

In this thesis, an analysis is carried out concerning the behavior of the electric field when a

line current is extracted/injected perpendicularly into a uniaxially anisotropic half-space. Such

a solution enables characterization of uniaxially anisotropic materials using alternating current

methods. This problem has previously been solved for the case of an isotropic half space. This

paper follows a parallel development to that presented by Bowler [J. Appl. Phys., 96, 4607-4613,

2004] in which a transverse magnetic potential formulation was employed to derive an analytic

solution for the electric field and alternating current potential drop measured by a four-point

probe in contact with an isotropic half-space conductor. Here, the case when conductivity is

given by a diagonal matrix quantity is treated. This is done by first solving for the electric

field in the case of a single wire, and then using superposition to obtain the electric field on

the conductor surface with two wires representing the current injection/extraction seen in a

four-point probe. Finally, an analytical expression for the potential drop measured between

the pick-up pins of the probe is given.
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CHAPTER 1. OVERVIEW

1.1 Introduction

In this thesis, the analytical tractability of solving for the potential drop of a four-point

probe injecting and extracting current from an anisotropic conductive half-space is hypothe-

sized. A solution to the problem is then derived.

Prajapati et al. (2) used alternating current potential drop (ACPD) to examine creep

damage in materials. They found that creep damage could be characterized by anisotropic

conductivity in materials. Tian et al. (3) sought to emulate material degradation in nuclear

power plants by subjecting Fe-Cu alloy to thermal aging and cold work. The resulting mate-

rial properties were then measured with pulsed eddy currents, with anisotropy being found to

monotonically increase with the amount of cold work. Todorov (4) determined the electromag-

netic properties of different types of heat exchanger tubes, including electrical conductivity.

Anisotropy was found between the two different geometrical directions.

1.2 Maxwell’s Equations

All classical electrodynamic problems can be solved by utilizing Maxwell’s equations, which

in time-harmonic form in a charge-free region are given by:

∇× ~E = iω ~B (1.1)

∇× ~H = ∇×
~B

µ
= ~J (1.2)

∇ · ~E = 0 (1.3)
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∇ · ~B = 0 (1.4)

where ~E is the electric field, ~B is the magnetic flux density, ~H is the magnetic field intensity,

~J is the current density, and µ is the permeability, here assumed to be isotropic. A time-

dependence of e−iωt is assumed above. Maxwell’s equations are often manipulated to obtain a

single differential equation for ~E. First, one takes the curl of (1.1), then substitutes for ∇× ~B

from (1.2):

∇×∇× ~E = iω∇× ~B = iωµ ~J. (1.5)

In an anisotropic conductor, we have the constitutive relation:

~J = ¯̄σ · ~E (1.6)

where ¯̄σ is the tensor conductivity of the metal, given by the following in the case of uniaxial

anisotropy:

¯̄σ =


σtt 0 0

0 σtt 0

0 0 σzz

 . (1.7)

Using this result in (1.5), we obtain a single equation for ~E within a conductor:

∇×∇× ~E − iωµ¯̄σ · ~E = ∇×∇× ~E − ¯̄k2 · ~E = 0, (1.8)

where ¯̄k2 = iωµ¯̄σ. It will be useful to express ¯̄k2 in the form:

¯̄k2 =


k2tt 0 0

0 k2tt 0

0 0 k2zz

 . (1.9)

Where k2tt = iωµσtt and k2zz = iωµσzz. Noting the following vector identity:

∇×∇× ~F = ∇(∇ · ~F )−∇2 ~F (1.10)
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and then using (1.3) with (1.10) on (1.8) then gives:

∇2 ~E + ¯̄k2 · ~E = 0. (1.11)

1.3 General Boundary Conditions

The general charge-free interface conditions on time-harmonic electromagnetic fields be-

tween two regions 1 and 2, Figure 1.1 are given by:

n̂× ( ~E2 − ~E1) = 0 (1.12)

n̂× ( ~H2 − ~H1) = ~Js (1.13)

n̂ · ( ~D2 − ~D1) = 0 (1.14)

n̂ · ( ~B2 − ~B1) = 0 (1.15)

where n̂ is the unit vector normal to the interface between the two materials and ~Js is the surface

current density on the interface. In the problem to be solved, the governing equation for the

electric field (1.11) can be used to find a governing equation for a potential in a source-free

anisotropic medium. Then, the boundary condition for the current given in (1.12) is applied

in conjunction with (1.6).

1.4 Overview

The geometry of the system to be solved consists of two primary components. The first

component is a conductive anisotropic half-space characterized by a uniaxial tensor conductivity

¯̄σ, given in (1.9). The second component is a wire of radius a injecting a time-harmonic current

Ie−iωt perpendicularly into the conducting space. This configuration is illustrated in Figure

(1.1). The electric field governing equation is re-framed in terms of a potential using the same

potential formulation as two papers. For the isotropic case, the potential given by Bowler 2004
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Figure 1.1: Cross section of wire of radius a carrying current I into a conductive half-space,
taken from Bowler 2004 (8).

(8) is used. For the anisotropic conductor, a modified version of the potential given in the book

by Felsen and Marcuvitz (14) is used.

Focusing on the conducting region, a governing equation for the potential that will be

defined later is transformed using the Hankel transform. The boundary condition (1.12) is

then used to find a solution for the potential. The electric field components are then found in

terms of the potential, for which a solution is available in closed form.

The potential drop in the practical case of a four-point probe is then found by superposition

of one configuration which describes injecting current and one configuration which describes

extracting current. The line integral of the superposed field between two other points p and

q which denote the positions of the pickup pins then gives the potential drop that can be

measured, as shown in Figure 1.2.

Figure 1.2: Four-point probe configuration with current injected/extracted at (±S, 0, 0) and
potential drop measured by pins at x = p and x = q, taken from (19).
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Introduction

Potential drop methods are a set of non-destructive evaluation techniques that detect defects

and characterize materials by using an apparatus, consisting of a number of electrodes, that

passes current through the material and the electrodes and then measures the resulting potential

drop. In full generality, a three-dimensional potential field is created by the current source and

conductor, whose variations are then measured. If we consider a crack of depth d, and make

the simplifying assumption that the voltage V is directly proportional to the distance between

probes, then assuming that the probes are a distance l apart on the surface, we have the

relationship (1):

V0
l

=
V1

l + 2d

Figure 2.1: Simple heuristic for how a potential drop methods are utilized in non-destructive
evaluation. Taken from Huang 2004 (1).
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This model, while overly simplified, serves as a reasonable qualitative heuristic for how the

measurement determines the quality of defects on conductive surfaces, and is most accurate

for cracks that are larger than the pin separation and for frequencies sufficiently high that the

current flows in a thin skin near to the conductor surface and crack faces.

2.1.1 Motivation/Examples

Several different examples of potential drop methods and their measurements will be ex-

amined in detail in what follows. Potential drop methods have been used to detect cracks in

materials via the mechanism mentioned in the previous subsection (6) (7). Potential drop has

also been used to characterize the properties of materials, including brass, aluminum, spring

steel, and carbon steel with precision better than that of eddy current techniques (10). As

shown below, transient potential drop methods could allow for the examination of layered

inhomogeneous media (11).

Related to the focus of this thesis on anisotropic materials, a model of uniaxial stress on

materials, that leads to anisotropy in electrical and magnetic parameters, is also summarized.

2.1.2 Four Point Probes Versus Two Point Probes

Use of four point probes is more accurate than two point probes. The underlying reason for

this is that there are resistance terms that are extremely difficult to estimate accurately that

arise when one uses the same electrodes to inject/extract current and measure potential drop.

2.2 Direct Current (DC) Potential Drop

2.2.1 Description and Comparison to Other Methods

In direct current potential drop (DCPD), the current running through the apparatus and

sample is direct current. Typically, two pairs of probes straddle the cracks. One pair sends

a direct current through the conductor, while another pair of electrodes straddles the crack

and measures the potential difference across it (5). The DCPD method is good for finding

hidden defects and for full automation of the measurement process (5). One common source of

error in DCPD methods is the thermoelectric effect, which is a potential difference caused by
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varying temperature. (6). The need for good electrical contacts with the sample also precludes

the possibility of scanning for defects, since dragging the contact across the surface would be

damaging to the probe and/or test-piece (5). Measurements are often conducted by calibrating

the main measurement probe to a reference probe which is placed in a defect-free region and

comparing the measured signals with each other (5) (6).

2.2.2 Measurement Examples

Yee and Lambert (6) conducted measurements on steel-welded T-joints. One purpose of

their work was to obtain a picture of early fatigue crack development in steel structures which

researchers could then use to improve their subsequent modelling of defect formation. A bend-

ing load was placed upon the joints by servohydraulic test rigs. The loading function was

sinusoidal, meaning that stress was taken on and off periodically, at a frequency of 1 to 3 Hz.

A reversing DCPD system (one which periodically reversed the polarity of the DC current) was

used in order to counteract the error caused by thermoelectric voltage. A voltage was taken

that was compared to a reference voltage measured in a defect-free area. The result was a pre-

diction of crack depth generated by the DCPD system, which was then compared to ink stains

or beachmarks observed after failure. The predictions obtained from the DCPD measurements

were in agreement with the ink stain/beachmark measurements of the crack depth (Figure 2.2).

Figure 2.2: Comparison of DCPD measurements to ink stain/beachmark profiles in fatigued
steel, taken from Yee and Lambert 1995 (6)
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Luukkonen and Ericsson (7) used a five point DCPD probe in order to test for crack

formations during a powder metallurgy process. The five point probe as displayed in the

paper is shown in Figure 2.3, and has the advantage that the reference probe is very close to

the measurement probe. The ratio of the measurement voltage to the reference voltage was

measured for several different deviations from the correct press setting, with a larger difference

indicating the presence of more severe cracking. Results were obtained for three different

specimens: a rectangular bar, an L-shaped bar, and a multilevel component (Figures 2.4 and

2.5).

Figure 2.3: The probe configuration used by Luukkonen and Ericsson (7).

2.3 Alternting Current (AC) Potential Drop

2.3.1 Description and Comparisons to other Methods

Alternating current potential drop (ACPD) runs alternating current through the electrodes

of the potential drop apparatus and the sample. The alternating current results in the so-called

“skin-effect” in the conducting material being tested, meaning the current density decays with

the material depth. Because the current goes through a smaller cross-sectional area, a lower

current is then required to obtain a larger potential drop than in DCPD. The research described

in this section implemented a four-point probe in both theory and measurement.
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Figure 2.4: The ratio of measured voltage drop to reference voltage for an L-shaped body as a
function of missetting, taken from Luukkonen and Ericsson (7).

2.3.2 Measurement Examples

Bowler calculated the electromagnetic field caused by current injected into a conductive

half-space (8) and plate (9). The solutions employ the use of transverse magnetic and trans-

verse electric vector potentials, in addition to integral transform methods, to solve Maxwell’s

equations for the particular set-up. In both papers, the solution is first derived for a single

AC current source being injected into the surface of the conductor (see Figure 1.1), and then

superposition is utilized to obtain the general solution for a probe situation in which another

wire carries the opposite current flowing out.

Bowler and Huang (10) were able to conduct measurements of the electrical conductivity

of a number of materials using four-point ACPD measurements. The measurements had the

advantage of not requiring a reference probe for calibration, making it useful for field measure-

Table 2.1: Measurements of conductivity by method and metal from (10).

Plate Zetec MIZ-120A Eddy Current ACPD

Brass 16.2 ± 0.3 16.6 ± 0.4 16.42 ± 0.09

Stainless Steel 0.7 ± 0.3 1.31 ± 0.02 1.369 ± 0.007

Spring Steel - - 5.50 ± 0.04
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Figure 2.5: The ratio of measured voltage drop to reference voltage for a multi-level body as a
function of missetting, taken from Luukkonen and Ericsson (7).

ments. The results also offered better precision than error-corrected broadband eddy current

measurements (Table 2.1) and allows for conductivity measurement on ferromagnetic metals

whereas eddy current methods do not. The approach was more usable than the prior set-up

of a circuit called a Heidweiller bridge which could be used to measure resistivity (equivalently

conductivity) in metals, but could not be transported and so was unsuitable for field use.

2.4 Transient Potential Drop

2.4.1 Description

Transient potential drop (TPD) employs the use of an exponential pulsed current injected

into the conducting surface. The implications of this were considered in a 2011 paper (11).

2.4.2 Example

One model of TPD (11) examines the effects of an exponential rise current on the voltage

drop that occurs on the surface of a conductor. In previous research, frequency dependent

solutions for the potential drop had already been obtained for a conductive half space. The
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voltage can be expressed, for a colinear configuration with equal spacing between electrodes,

as ∆V = I0
2πσf(ρ, ω). The frequency dependent function is converted into the time domain by

employing the Laplace transform, resulting in

∆V =
I0

2πσ
f(ρ, t)

and

∆Ṽ =
I0

2πσ
f̃(ρ, ω).

These are then used to find a solution for which the current is an exponential pulse given by

I(t) = I0[1− e−
t
τ ]. The result is given by

fν(ρ, t) =
ν

2ρ
[h(κ, ν, t)− h(κ,−ν, t)],

where:

h(κ, ν, t) =
1

ν
erfc

(
κ

2
√
t

)
− eν2t

[
1

ν
eνκ erfc

(
ν
√
t+

κ

2
√
t

)
+κ

∫ ∞
1

1

u
eνκu erfc

(
ν
√
t+

κu

2
√
t

)
du+ κ erfc(ν

√
t) ln ρ

]
and ν = − 1

τ . The method also has the potential to determine conductivity and permeability

as functions of depth, and therefore could be used as a tool for characterizing inhomogeneous

materials. This is because the Fourier expansion of such a function has an infinite number of

terms, allowing a broadband measurement to be carried out.

2.5 Anisotropic Materials

Zhou and Dover (12) analyzed the electromagnetic induction problem as it occurs over an

anisotropic half-space. They used an auxiliary vector potential ~A, find its Fourier transform Ã,

and then solved governing equations for the components of Ã in order to obtain an algebraic

transformed magnetic induction field B̃ in terms of Ã. Then, the case of a solenoid is numerically

analyzed, with the relative change in the B-field analyzed as a function of relative change in

anisotropy.

Then, a model for uniaxial stress in which the magnetization changed by a factor of ~M+ζ ~M

along one direction was developed.
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Figure 2.6: Variation in ρf(ρ), and therefore voltage, as a function of time in the case of a
transient current excitation of a four-point probe in contact with a conductor, taken from (11).

Chen, Brennan, and Dover (13) confirmed the validity of certain boundary conditions for

an isotropic, infinitely long bar provided that the transverse permeability µy replaced µ in the

expressions. Then, using a very similar uniaxial stress model as in (12) the relative difference

in electric field was derived as a function of anisotropy.
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CHAPTER 3. ANALYSIS

3.1 Introduction

In this section, the electrical potential difference between two points on the surface of an

anisotropic conducting half space in which two lines of current are injected/extracted perpen-

dicular to the surface by two infinitesimally thin wires is derived. The field is first derived for

a single wire, and then another wire is added later by superposition.

3.2 Governing Equation of Electrical Potential due to One Wire

An expression for the electric and magnetic fields in a uniaxially anisotropic space in terms

of two auxiliary potentials is given by Felsen and Marcuvitz (14). The expressions given, on

modern form, are:

~E(ρ, z) = −iωµ
[
∇×∇× ẑ −

(
σtt
σzz
− 1

)
∇2
z ẑ

]
ψ′′(ρ, z), z ≤ 0 (3.1)

where the conductivity is given by the symmetric, second rank tensor (1.7), the transverse

gradient operator ∇z is defined by:

∇z = ∇− ∂

∂z
ẑ, (3.2)

and ψ′′(ρ, z) is the transverse electric potential. The isotropic case from above is the model

used by Bowler 2004 (8) and therefore the governing equations for the isotropic case are the

same as those stated in that paper in the air region (equation (10) in (8)) is reproduced in (3.3)

below.

∇2∇2
zψ
′′(ρ, z) = −ẑ · ~J(ρ, z), z ≤ 0 (Air) (3.3)
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For the governing equations within a sourceless, uniaxially anisotropic medium, we can

use Felsen/Marcuvitz, who derived a governing equation for the potential beginning with the

governing equations for the electric field discussed in Chapter 1. (14).

(
σzz
σtt

∂2

∂z2
+∇2

z + k2zz

)
∇2
zψ
′′(ρ, z) = 0, z ≥ 0 (Conductor) (3.4)

Setting

Ψ(ρ, z) = ∇2
zψ
′′(ρ, z) (3.5)

we obtain from (3.3) and (3.4):

∇2Ψ(ρ, z) = −ẑ · ~J(ρ, z), z ≥ 0 (3.6)

(
σzz
σtt

∂2

∂z2
+∇2

z + k2zz

)
Ψ(ρ, z) = 0, z ≤ 0 (3.7)

Focusing on the conductor region, we can express (3.7) in cylindrical coordinates:

(
σzz
σtt

∂2

∂z2
+

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ k2zz

)
Ψ(ρ, z) = 0 (3.8)

The definition of the m-th order Hankel transform with its self inverse is given by:

f̃(κ) =

∫ ∞
0

f(ρ)Jm(κρ)ρdρ (3.9)

f(ρ) =

∫ ∞
0

f̃(κ)Jm(κρ)κdκ. (3.10)

If ρJ0(κρ)∂f(ρ)∂ρ and ρf(ρ)∂J0(κρ)∂ρ vanish at both 0 and ∞, then we have the identity from (15):

∫ ∞
0

[(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
f(ρ)

]
J0(κρ)ρdρ = −κ2f̃(κ). (3.11)
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Taking the zeroth-order Hankel transform of (3.8):

∫ ∞
0

[(
σzz
σtt

∂2

∂z2
+

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ k2zz

)
Ψ(ρ, z)

]
J0(κρ)ρdρ

=

∫ ∞
0

[(
σzz
σtt

∂2

∂z2
+ k2zz

)
Ψ(ρ, z)

]
J0(κρ)ρdρ+

∫ ∞
0

[(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
Ψ(ρ, z)

]
J0(κρ)ρdρ

=

(
σzz
σtt

∂2

∂z2
+ k2zz

)
Ψ̃(κ, z)− κ2Ψ̃(κ, z)

=

(
σzz
σtt

∂2

∂z2
− γ2

)
Ψ̃(κ, z)

(3.12)

where γ2 = κ2 − k2zz and the identity (3.11) has been used on the second term of the second

equation of (3.12), and the RHS of (3.8) now implies a differential equation for Ψ̃(κ, z):

(
∂2

∂z2
− σtt
σzz

γ2
)

Ψ̃(κ, z) = 0, z ≤ 0. (3.13)

3.2.1 Solution to Governing Equation

Let
√

σtt
σzz
γ = γ′. A well-known general solution to (3.13) is:

Ψ̃(κ, z) = A(κ)e−γ
′z +B(κ)eγ

′z. (3.14)

Since Ψ(ρ, z) must be finite in the limit z →∞, B(κ) must vanish. Thus:

Ψ̃(κ, z) = A(κ)e−γ
′z (3.15)

Taking the inverse Hankel transform of (3.15) using (3.10), we have:

Ψ(ρ, z) =

∫ ∞
0

A(κ)e−γ
′zJ0(κρ)κdκ (3.16)

In order to solve for A(κ), we must first deduce some boundary conditions. Suppose the current

flowing through the wire is I. If the radius of the wire is a, then the area of the wire/conductor

interface is circular and equal to πa2. Then, assuming no significant skin effect, the current

density at the interface (z = 0) is given by:
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J(ρ, 0) =


I
πa2

, ρ < a

0, ρ > a.

(3.17)

Since the current runs strictly in the z direction at the conductor surface, we have the consti-

tutive relation:

J = σzzEz (3.18)

so that we have the condition, from (3.17) and (3.18), that:

Ez(ρ, 0) =


I

πa2σzz
, ρ < a

0, ρ > a.

(3.19)

To obtain a boundary condition for Ψ(ρ, z), we must obtain the electric field components in

terms of Ψ(ρ, z) and ψ′′(ρ, z) using (3.1). Distributing ψ′′(ρ, z) through both operators in (3.1)

yields:

~E(ρ, z) = −iωµ
[
∇×∇× ẑψ′′(ρ, z)−

(
σtt
σzz
− 1

)
∇2
z ẑψ

′′(ρ, z)

]
, z ≤ 0. (3.20)

The first term in the parentheses in (3.20) is given by:

∇×∇× ẑψ′′(ρ, z) = ∇×
[
ρ̂

(
1

ρ

∂ψ′′(ρ, z)

∂φ

)
− φ̂

(
∂ψ′′(ρ, z)

∂ρ

)]
. (3.21)

Using cylindrical symmetry ( ∂
∂φ = 0) yields:

∇×∇× ẑψ′′(ρ, z) = −∇× φ̂
[
∂ψ′′(ρ, z)

∂ρ

]
. (3.22)

Taking the curl in (3.22):

∇×∇× ẑψ′′(ρ, z) = ρ̂
∂

∂z

∂ψ′′(ρ, z)

∂ρ
− ẑ 1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
ψ′′(ρ, z)

]
. (3.23)

The next goal is to replace the right hand side of (3.23) with more succinct operator notation.

By definition, in cylindrical coordinates with cylindrical symmetry ( ∂
∂φ = 0), we have:
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∇2ψ′′(ρ, z) =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
ψ′′(ρ, z)

)
+
∂2ψ′′(ρ, z)

∂z2
. (3.24)

By dropping the z derivative term above, the transverse Laplacian is given by:

∇2
zψ
′′(ρ, z) =

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
ψ′′(ρ, z)

]
. (3.25)

Substituting the LHS of (3.25) for the RHS of (3.23), we obtain:

∇×∇× ẑψ′′(ρ, z) = ρ̂
∂2ψ′′(ρ, z)

∂z∂ρ
− ẑ∇2

zψ
′′(ρ, z) (3.26)

Re-writing (3.20) using (3.26) gives us:

~E(ρ, z) = −iωµ
[
ρ̂
∂2ψ′′(ρ, z)

∂z∂ρ
− ẑ∇2

zψ
′′(ρ, z)−

(
σtt
σzz
− 1

)
∇2
t ẑψ

′′(ρ, z)

]
= −iωµ

[
ρ̂

(
∂2ψ′′(ρ, z)

∂z∂ρ

)
− ẑ σtt

σzz
Ψ(ρ, z)

] (3.27)

We can now separate field components in (3.27) to obtain:

Eρ(ρ, z) = −iωµ∂
2ψ′′(ρ, z)

∂z∂ρ
(3.28)

Ez(ρ, z) = iωµ
σtt
σzz

Ψ(ρ, z) (3.29)

Using (3.29) in (3.19) gives us a boundary condition for Ψ(ρ, z) at the interface. Recalling that

k2tt = iωµσtt:

Ψ(ρ, 0) =


I

k2ttπa
2 ρ < a

0 ρ > a

(3.30)

Using (3.16) to replace the potential with the integral gives:

Ψ(ρ, 0) =

∫ ∞
0

A(κ)J0(κρ)κdκ =
I

k2ttπa
2

(3.31)

in the ρ < a region. The Fourier-Bessel integral is given by result 6.3.62 in (16):
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f(κ) =

∫ ∞
0

Jm(ακ)αdα

∫ ∞
0

f(ζ)Jm(αζ)ζdζ. (3.32)

Using (3.32) on (3.31) with m = 0 gives:

A(κ′) =

∫ ∞
0

J0(ρκ
′)ρdρ

∫ ∞
0

A(κ)J0(ρκ)κdκ =
I

k2ttπa
2

∫ a

0
J0(ρκ

′)ρdρ, (3.33)

where the limit on the RHS of (3.33) is a since Ψ(ρ, 0) = 0 for ρ > a. The integral on the RHS

can be evaluated (result 9.1.30 in (17)) so that (3.33) becomes:

A(κ) =
I

k2ttπa
2

(
aJ1(κa)

κ

)
=

I

k2ttπ

J1(κa)

κa
. (3.34)

Using the result 9.1.7 in (17):

lim
z→0

Jν(z) ∼
(z

2

)ν 1

Γ(ν + 1)
(3.35)

which, for ν = 1 and z = a:

lim
a→0

Jν(κa) ∼ κa

2

lim
a→0

Jν(κa)

κa
∼ 1

2
.

(3.36)

Then for a wire that is allowed to become infinitesimally thin, we have:

lim
a→0

A(κ) ∼ I

2k2ttπ
(3.37)

Inserting the limiting value for A(κ)(3.37) into (3.16) gives:

Ψ(ρ, z) =
I

2k2ttπ

∫ ∞
0

e−γ
′zJ0(κρ)κdκ (3.38)

We have from (18), result 8.2.23:

∫ ∞
0

√
xe−α

√
x2+β2

J0(xy)
√
xydx =

α
√
y

(y2 + α2)3/2
e−β
√
y2+α2

(1 + β
√
y2 + α2) (3.39)

Dividing each side by
√
y, this gives:

∫ ∞
0

√
xe−α

√
x2+β2

J0(xy)
√
xdx =

α

(y2 + α2)3/2
e−β
√
y2+α2

(1 + β
√
y2 + α2) (3.40)
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Expression (3.40) applies to (3.38) with α =
√

σtt
σzz
z, x = κ, y = ρ, and β = −ikzz (we choose

a minus sign on β because of the requirement <(β2) > 0). Let:

r′ =

√
ρ2 +

σtt
σzz

z2. (3.41)

Using these relations in (3.40) on the integral in (3.38) yields:

Ψ(ρ, z) =
I

2k2ttπ

√
σtt
σzz

z

r′3
eikzzr

′ (
1− ikzzr′

)
(3.42)

3.2.2 Derivation of Electric Field Components for One Wire

Expression (3.42) in conjunction with (3.29) quickly yields a solution for the z component of

the electric field:

Ez(r
′) =

I

2πσzz

√
σtt
σzz

z

r′3
eikzzr

′ (
1− ikzzr′

)
(3.43)

Expression (3.43) reduces to that of the isotropic half space when
√

σtt
σzz

= 1 (equation (33) in

(8)). To obtain Eρ, we apply the zero-order Hankel transform to (3.5) and then use the identity

(3.11), yielding:

ψ̃′′(κ, z) = −Ψ̃(κ, z)

κ2
(3.44)

Which means, using (3.15) with (3.37) on (3.44) , after inverting the transform:

ψ′′(ρ, z) =
I

2k2ttπ

∫ ∞
0

−1

κ2
e−γ

′zJ0(κρ)κdκ

=
I

2k2ttπ

∫ ∞
0

1

κ
e−γ

′zJ0(κρ)dκ

(3.45)

Taking ∂
∂ρ of (3.45) gives:

∂ψ′′(ρ, z)

∂ρ
=

I

2k2ttπ

∫ ∞
0

e−γ
′zJ1(κρ)dκ (3.46)

According to result 8.4.9 of (18) we have:

∫ ∞
0

1√
x
e−α
√
x2+β2

J1(xy)
√
xydx =

1
√
y

(
e−βα − α√

y2 + α2
e−β
√
y2+α2

)
(3.47)
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By canceling the
√
x terms on the integrand in the left hand side, we obtain:

∫ ∞
0

e−α
√
x2+β2

J1(xy)dx =
1

y

(
e−βα − α√

y2 + α2
e−β
√
y2+α2

)
(3.48)

Apply (3.48) to the integral in (3.46) using α =
√

σtt
σzz
z, x = κ, y = ρ, and β = −ikzz (again,

we pick the sign for β based on the requirement <(β) > 0):

∂ψ′′(ρ, z)

∂ρ
=

I

2k2ttπ

1

ρ

eiktt −
√

σtt
σzz
z

r′
eikzzr

′

 (3.49)

Using (3.28) on (3.49) to obtain Eρ(ρ, z):

Eρ(ρ, z) =
iωµI

2π

1

ikttρ

{
eikttz − eikzzr

′

ikzzr′

[
1 +

(ikttz)
2

ikzzr′

(
1− 1

ikzzr′

)]}
(3.50)

It can be checked that, in the isotropic case
√

σtt
σzz

= 1, equation (3.50) reduces to the isotropic

(40) in (8), given by:

Eρ(ρ, z) =
iωµI

2π

1

ikρ

{
eikz − eikr

ikr

[
1 +

(ikz)2

ikr

(
1− 1

ikr

)]}
. (3.51)

3.2.3 Potential Drop on Surface

Figure 3.1: Four-point probe configuration with current injected/extracted at (±S, 0, 0) and
potential drop measured by pins at x = p and x = q, taken from (19).
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The configuration of a four-point probe in contact with a conductor surface is displayed in

Figure (3.1). Wires contact the surface at coordinates (±S, 0, 0). Then, the superposed electric

field is given by:

~E(ρ, z) = ~ES(r+)− ~ES(r−) (3.52)

where, from (3.41) we have:

r± =
√

(x± S)2 + y2 + z2 (3.53)

Assume that y = c = a constant. Then the voltage from x = q to x = p is given by the line

integral:

v = −
∫ q

p
Ex(x, c, 0)dx (3.54)

We can find the integrand of (3.54) using:

Ex(x, c, 0) =
x+ S

ρ+
ES(ρ+, 0)− x− S

ρ−
ES(ρ−, 0) (3.55)

where:

ρ± =
√

(x± S)2 + c2 (3.56)

Using (3.55) to expand (3.54):

v = −
∫ q

p

x+ S√
(x+ S)2 + c2

ESρ (x+ S, c, 0)dx+

∫ q

p

x− S√
(x− S)2 + c2

ESρ (x− S, c, 0)dx (3.57)

Changing the variable to X = x± S, respectively in (3.57):

v = −
∫ q+S

p+S

X√
X2 + c2

ESρ (X, c, 0)dX +

∫ q−S

p−S

X√
X2 + c2

ESρ (X, c, 0)dX (3.58)

Then, evaluating Eρ(X, c, 0) using (3.50) gives:

ESρ (X, c, 0) =
I

2π
√
σttσzz

(
ikzz√
X2 + c2

− eikzz
√
X2+c2

X2 + c2

)
(3.59)
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Plugging (3.59) into (3.58) gives:

v =− I

2π
√
σttσzz

(∫ q+S

p+S

X√
X2 + c2

[
−ikzz√
X2 + c2

+
eikzz

√
X2+c2

X2 + c2

]
dX

+

∫ q−S

p−S

X√
X2 + c2

[
−ikzz√
X2 + c2

+
eikzz

√
X2+c2

X2 + c2

]
dX

)

= − I

2πσtt

√
σtt
σzz

(∫ q+S

p+S

[
−ikzzX
X2 + c2

+
Xeikzz

√
X2+c2

X2 + c23/2

]
dX

+

∫ q−S

p−S

[
−ikzzX
X2 + c2

+
Xeikzz

√
X2+c2

X2 + c23/2

]
dX

)
(3.60)

We note the identity from result 5.1.1 of (17)

∫
eax

x2
dx =

−eax

x
− aE1(−ax) (3.61)

Where E1(z) =
∫∞
z

e−t

t dt is the exponential integral function. Using the change of variable

α =
√
X2 + c2 so that X =

√
α2 − c2 and dX = αdα√

α2−c2 on the second term of each integral

gives:

v = − I

2π
√
σttσzz

(∫ q+S

p+S

−ikzzXdX
X2 + c2

+

∫ √(q+S)2+c2

√
(p+S)2+c2

eikzzα

α2
dα

+

∫ q−S

p−S

−ikzzXdX
X2 + c2

+

∫ √(q−S)2+c2

√
(p−S)2+c2

eikzzα

α2
dα

) (3.62)

Finally, using
∫

XdX
X2+c2

= 1
2 ln(X2 + c2) and (3.61), we obtain:

v =
I

2π
√
σttσzz

[f(S + q, c)− f(S − q, c)− f(S + p, c) + f(S − p, c)] (3.63)

where:

f(X, c) = f(ρ =
√
X2 + c2) =

eikzzρ

ρ
+ ikzz[ln ρ+ E1(−ikzzρ)]. (3.64)

This is in accordance with what had been determined in the isotropic case by (19), where the

potential drop was given by:

v =
I

2πσ
[fi(S + q, c)− fi(S − q, c)− fi(S + p, c) + fi(S − p, c)], (3.65)
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where the closed for of fi is given by:

fexact(x, y) = fexact(ρ =
√
x2 + y2) =

eikρ

ρ
+ ik[ln ρ+ E1(−ikρ)]. (3.66)

It is seen that the anisotropic case differs in a few respects. The term 1√
σttσzz

replaces 1
σ in the

prefactor. The term kzz replaces k throughout.
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CHAPTER 4. SUMMARY AND DISCUSSION

4.1 Summary

This paper has derived an expression for the potential drop in a four-point probe placed

over an anisotropic space. A few deviations are found in the anisotropic case that distinguish it

from the isotropic case. First, the term I
2πσ becomes I

2πσtt
. Second, another pre-factor term of√

σtt
σzz

appears in the expression for v. Third, the term k2 = −iωµσ appearing in the isotropic

solution is replaced with k2zz = −iωµσzz. These are very simple modifications to the isotropic

case and are therefore rather elegant.

In the evaluation of the electric field components, the replacement of σ with σtt the replace-

ment of k with kzz also holds. In addition, the z term is replaced by
√

σtt
σzz
z. Thus, the electric

field in the anisotropic case is distorted relative to the electric field in the isotropic case in the

z-direction.

4.2 Future Work

This analysis has dealt with the effect of tensor conductivity ¯̄σ on the electric field distribu-

tion and potential drop measured by a four-point probe in the case of a uniaxially anisotropic

half-space conductor. A relatively straightforward next step would be to adapt this for a

plate conductor exhibiting uniaxial anisotropy. Beyond that, the effects of having a uniaxial

anisotropy in permeability, with tensor ¯̄µ, may be considered. With tensor ¯̄µ, difficulties arise

in the manipulation of Maxwell’s equations, since ~B cannot be decoupled from ¯̄µ as it can be

from µ when trying to obtain a governing equation for the electric field; (1.11) in this analysis.

Further, as was discussed in the literature review, the papers by Zhou and Dover (12) and

also by Chen, Brennan, and Dover (13) use models of stress-induced anisotropy which involve
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directional changes in the magnetization of the stressed materials. Analysis of how a four-point

probe responds to anisotropic permeability via the solutions presented in this paper could be

used to conduct stress measurements using the magnetization models of (12) and (13).
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